Observations of Comet ISON from **SOHO**, **STEREO** and **SDO**

Just sixty-eight days from today, on Oct 10th, Comet ISON will enter the field of view of the NASA STEREO/SECCHI HI-2A instrument.

From that time, and until at least December 7, it will be imaged around the clock, at least every two hours, by around a dozen imaging instruments on FOUR solar physics research satellites, situated in three **very different locations** in the solar system.

Karl Battams

US Naval Research Laboratory

WHERE will the spacecraft be?

- 1. The **SOHO** satellite is at the L1 Lagrange point, about 1-million miles from Earth in the Sun-Earth line.
- 2. The **SDO** satellite is in a geosynchronous orbit
- The STEREO satellites follow Earth's orbit but at relatively faster ("STEREO-Ahead") and slower ("STEREO-Behind") velocities than Earth. On November 28, 2013, the STEREO spacecraft will have a 64° separation angle on the far side of the Sun

Timeline of Observations

Pre-Perihelion:

October 10: November 21: November 26, 0400UT: November 27, 0200UT: November 28, 0400UT: November 28, 1300UT: Enters STEREO/SECCHI HI-2A (to Nov 22) Enters STEREO/SECCHI HI-1A (to Nov 28) Enters STEREO/SECCHI COR-2B Enters SOHO/LASCO C3 Enters STEREO/SECCHI COR-2A Enters SOHO/LASCO C2

PERIHELION observations, (T = November 28 18:17UT)

~1600 - 2300UT: ~1700 - 2200UT: ~1720 - 1920UT: ~1810 - 2010UT: ~1820UT +/- ??hr:

Post-Perihelion:

November 28 2300UT: November 29 1400UT: November 29 2000UT: November 30 2300UT: November 31 0000UT: Transits STEREO/SECCHI COR-18 Transits STEREO/SECCHI COR-1A Transits SOHO/SUMER Transits STEREO/SECCHI EUVI-B Transits SDO/AIA → TBD

Exits SOHO/LASCO C2 Exits STEREO/SECCHI COR-2A Exits STEREO/SECCHI COR-2B Exits SOHO/LASCO C3 Enters STEREO/SECCHI HI-1A (to Dec 7)

Comet Lovejoy reached perihelion at 0.0055AU, for which the SDO team off-pointed the spacecraft by ~800-arcsec.

In order to image Comet ISON, with perihelion at 0.012AU, SDO will need to off-point by up to ~1600-arcsec.

Can they do it? Will they see ISON?

I defer further discussion of potential SDO observations to Karel Schrijver (Fri. 9am session)

Path of Comet C/2012 S2 (ISON) November 30 through the SOHO/LASCO C3 and C2 fields of view, Nov 27-30 2013 C2 November 28 ***** November 27 Many thanks to Dr. Bill Thompson (NASA/GSFC) for putting this image together!

LASCO FILTERS:

Clear

- Blue 420-520nm
- Orange 540-640nm
- Deep Red 730-835nm
 - 400-850nm

LASCO C3 and C2 will observe from **Nov 27 ~0200UT through Nov 30 ~2300UT** with only a ~2.5hr gap while the *nucleus* is behind the LASCO C2 occulting disk.

Image cadence will be **12-min**, with rotation through filters/polarizers, and both long and short exposures (times TBD) to view both the **tail** and **nucleus** without saturation.

A request has been made for realtime commanding coverage:

- 1. At first appearance in C3
- 2. During entire C2 transit
- 3. No more than 8hr gaps for postperihelion C3 transits

For approximately 1hr either side of perihelion, Comet ISON will transit part of the SOHO/SUMER slit.

The SUMER (**Solar Ultraviolet Measurements of Emitted Radiation**) instrument is a UV telescope and spectrometer. It has a spatial resolution of 1-arcsec across the slit and 2-arcsec along the slit, and a wavelength range of 50-161nm.

SUMER has not been operational since 2011 (?) but considerations are underway to turn the instrument back on for ISON's perihelion passage.

SUMER has never been used to observe a comet. The SOHO/UVCS instrument has, and returned valuable Comet Lovejoy results, for example, but that instrument is no longer functional.

Observing plan:

Nominal observations only (40min exposure, 2hr cadence)

HI-2 will give us a nice early view of ISON, and maybe some solar wind interactions, but the very large pixels can prohibit detailed analyses. Thus we see no reason for extra telemetry here.

Observing plan:

Nominal: 35-min exposure, 40min cadence

Additional HI-1A Observations:

Depending on brightness and available telemetry, individual short-exposures and sub-fields may be taken at times.

20-deg fov (3 - 23° from Sun) 35-arcsec/pix, 650 - 750nm

HI-1 images can reveal beautiful comet tail structures and solar wind interactions

[opposite: C/2012 L4 (PanSTARRS) in STEREO HI-1B]

STEREO/SECCHI COR2 coronagraph

2-15Rsun fov, sun-centered, 15-arcsec/pix, 650 - 750nm, brightness and pB

STEREO/SECCHI COR1 coronagraph

1.3 - 4Rsun fov, sun-centered, 7.5-arcsec/pix, 650 - 660nm, brightness and pB

ISON perihelion passage:

COR-A

COR2-A: Nov 28, 04UT – Nov 29, 13UT COR1-A: Nov 28, 1700 – 2200UT EUVI-A: No transit

ISON perihelion passage:

COR2-B: Nov 26 04UT - Nov 29, 20UT COR1-B: Nov 28, 1600 - 2300UT EUVI-B: Nov 28, 1810 - 2010<u>UT</u>

COR-B

STEREO/SECCHI COR2 observing plans

Additional telemetry requested during perihelion passage, but STEREO's distance from Earth (nearly 2AU) places constraints

COR-2 nominal cadence: 15-min brightness, 60-min sequence, full-res Additional request: 15-min cadence (brightness) subfield with varied exposure times

COR-1 nominal: 10-min brightness and polarization seq., half-resolution Additional requested: 5-min brightness and seq subfield (effective cadence: 2.5min)

Specific exposure times and sub-fields TBD

STEREO/SECCHI COR-x Science

Observations from STEREO's two different viewpoints in space yield important results about the **dust tails** of comets (e.g. Comet Lovejoy results)

From Sekanina & Chodas, 2012

STEREO/SECCHI EUVI

0.9° fov, 1.6-arcsec/pixel 304A, 171A, 195A, 284A

STEREO/SECCHI EUVI-B observing plans

Additional telemetry requested during perihelion passage

Nominal Observations: 10-min cadence Planned Observations:

- 171A only (Lovejoy showed strongest here)
- 10-min full field (low compression)
- 40s subfield (off-limb), long exp, lossless compression.

STEREO/SECCHI EUVI Science

Comet Lovejoy was seen clearly "**wiggling**" through the solar corona in 2011. Data such as these have opened **a new window in solar physics**, yielding valuable clues about both the coronal magnetic fields, and the comets themselves.

ISON passage: Nov 28, 1750 – 2000UT

Comet ISON: Outbound

As Comet ISON heads away from perihelion (assuming survival!), it will pass once more through HI-1A before departing all of our fields of view...

...unless...

Additional observations of ISON

We have the opportunity to **roll either one or both** of the STEREO spacecraft such that observations of ISON are increased and/or extended.

However, any spacecraft maneuver has inherent risks. The STEREO spacecraft are approaching 7yrs old and the IMUs are showing signs of **significant degradation**. While the IMU is not essential for a roll, there currently exists no CONOPS for operating STEREO without the IMUs, should they fail completely.

Comet ISON: Additional observations

Pre-perihelion, a <mark>180-degree roll</mark> of the STEREO-B spacecraft will yield the passage opposite.

These observations would coincide with those from HI-1A during Nov 21- 25 \rightarrow "Stereoscopic" observations?

STEREO **can not dwell** at this roll angle for more than a couple of hours per day → repeated roll maneuvers

Comet ISON: Additional observations

Post-perihelion, ISON will leave HI-1A on Dec 7.

We can roll both spacecraft and extend observations through January 27.

Observations of Comet ISON from STEREO: Going beyond nominal

Restrictions:

- Can only roll for a couple of hours per day
- On STEREO-A, the IMU is currently turned OFF and must be turned on 4hrs prior to use, and functionally verified, before a roll can occur.
- The STEREO-B IMU is functional but aging

Possible options:

- Roll daily for ~1 week beyond perihelion, then every 4-5 days after that
- Roll every few days only
- Only roll B, per the above (lower the IMU risk, but only one viewpoint)
- No rolls.

Possible negative Impacts:

- STEREO-A IMU may fail completely (not fatal to s/c, but certainly not good)
- STEREO-B IMU may begin to degrade similarly with excessive use
- STEREO Heliospheric Imager science mission interrupted
- In-situ instruments on STEREO affected (though they may not care)

Observations of Comet ISON from STEREO: Going beyond nominal

Our question to the community:

What is the **SCIENTIFIC VALUE** of additional, rolled, HI-1 observations of Comet ISON both pre- and post-perihelion?

What SCIENCE GOAL can be achieved with this data that **can not** be achieved by other means?

- Solar wind interaction?
- CME/CIR interaction?
- Dust/ion tails?
- Stereoscopic views?
- Photometry?

"More images = better" is insufficient justification for the risk to the IMUs.

Please come and find myself and Bill Thompson (GSFC, STEREO Scientist) during this Workshop and discuss this with us!

karl.battams@nrl.navy.mil william.t.thompson@nasa.gov